Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Build Environ ; 221: 109309, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1894840

ABSTRACT

The number of occupants in a space influences the risk of far-field airborne transmission of SARS-CoV-2 because the likelihood of having infectious and susceptible people both correlate with the number of occupants. This paper explores the relationship between occupancy and the probability of infection, and how this affects an individual person and a population of people. Mass-balance and dose-response models determine far-field transmission risks for an individual person and a population of people after sub-dividing a large reference space into 10 identical comparator spaces. For a single infected person, the dose received by an individual person in the comparator space is 10 times higher because the equivalent ventilation rate per infected person is lower when the per capita ventilation rate is preserved. However, accounting for population dispersion, such as the community prevalence of the virus, the probability of an infected person being present and uncertainty in their viral load, shows the transmission probability increases with occupancy and the reference space has a higher transmission risk. Also, far-field transmission is likely to be a rare event that requires a high emission rate, and there are a set of Goldilocks conditions that are just right when equivalent ventilation is effective at mitigating against transmission. These conditions depend on the viral load, because when they are very high or low, equivalent ventilation has little effect on transmission risk. Nevertheless, resilient buildings should deliver the equivalent ventilation rate required by standards as minimum.

3.
BMJ Open ; 11(12): e050869, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1546521

ABSTRACT

OBJECTIVES: To help people make decisions about the most effective mitigation measures against SARS-CoV-2 transmission in different scenarios, the likelihoods of transmission by different routes need to be quantified to some degree (however uncertain). These likelihoods need to be communicated in an appropriate way to illustrate the relative importance of different routes in different scenarios, the likely effectiveness of different mitigation measures along those routes, and the level of uncertainty in those estimates. In this study, a pragmatic expert elicitation was undertaken to supply the underlying quantitative values to produce such a communication tool. PARTICIPANTS: Twenty-seven individual experts from five countries and many scientific disciplines provided estimates. OUTCOME MEASURES: Estimates of transmission parameters, assessments of the quality of the evidence, references to relevant literature, rationales for their estimates and sources of uncertainty. RESULTS AND CONCLUSION: The participants' responses showed that there is still considerable disagreement among experts about the relative importance of different transmission pathways and the effectiveness of different mitigation measures due to a lack of empirical evidence. Despite these disagreements, when pooled, the majority views on each parameter formed an internally consistent set of estimates (for example, that transmission was more likely indoors than outdoors, and at closer range), which formed the basis of a visualisation to help individuals and organisations understand the factors that influence transmission and the potential benefits of different mitigation measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans
5.
Proc Math Phys Eng Sci ; 477(2247): 20200855, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1165605

ABSTRACT

The year 2020 has seen the emergence of a global pandemic as a result of the disease COVID-19. This report reviews knowledge of the transmission of COVID-19 indoors, examines the evidence for mitigating measures, and considers the implications for wintertime with a focus on ventilation.

6.
Build Environ ; 191: 107617, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1036984

ABSTRACT

We present a mathematical model and a statistical framework to estimate uncertainty in the number of SARS-CoV-2 genome copies deposited in the respiratory tract of a susceptible person, ∑ n , over time in a well mixed indoor space. By relating the predicted median ∑ n for a reference scenario to other locations, a Relative Exposure Index (REI) is established that reduces the need to understand the infection dose probability but is nevertheless a function of space volume, viral emission rate, exposure time, occupant respiratory activity, and room ventilation. A 7  h day in a UK school classroom is used as a reference scenario because its geometry, building services, and occupancy have uniformity and are regulated. The REI is used to highlight types of indoor space, respiratory activity, ventilation provision and other factors that increase the likelihood of far field ( > 2  m) exposure. The classroom reference scenario and an 8  h day in a 20 person office both have an REI ≃ 1 and so are a suitable for comparison with other scenarios. A poorly ventilated classroom (1.2 l s-1 per person) has REI > 2 suggesting that ventilation should be monitored in classrooms to minimise far field aerosol exposure risk. Scenarios involving high aerobic activities or singing have REI > 1 ; a 1  h gym visit has a median REI = 1 . 4 , and the Skagit Choir superspreading event has REI > 12 . Spaces with occupancy activities and exposure times comparable to those of the reference scenario must preserve the reference scenario volume flow rate as a minimum rate to achieve REI = 1 , irrespective of the number of occupants present.

SELECTION OF CITATIONS
SEARCH DETAIL